Secoiridoid Glycosides from Gentiana scabra

Rie Kakuda, Takeyoshi Iijima, Yasunori Yaoita, Koichi Machida, and Masao Kikuchi*

Department of 2nd Analytical Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan

Received July 20, 2001

Two new secoiridoid glycosides, 4'-O- β -D-glucopyranosylgentiopicroside (**1**) and 6'-O- β -D-glucopyranosylgentiopicroside (**2**), have been isolated from the rhizomes and roots of *Gentiana scabra* together with three known compounds, olivieroside, 1-O- β -D-glucopyranosylamplexine, and benzyl alcohol O- α -L-arabinopyranosyl (1 \rightarrow 6)- β -D-glucopyranoside. The structures of **1** and **2** were elucidated using chemical and physicochemical (MS and NMR) studies.

The rhizomes and roots of Gentiana scabra Bunge (Gentianaceae) are the crude drug Gentianae Scabrae Radix, used as a stomachic or stimulant of appetite in Japan.¹ The constituents of this crude drug have been previously investigated and shown to contain secoiridoid glucosides.^{1–3} In this paper, we describe the isolation and structure elucidation of two new secoiridoid glycosides, 4'- $O-\beta$ -D-glucopyranosylgentiopicroside (1) and 6'- $O-\beta$ -D-glucopyranosylgentiopicroside (2), together with three known compounds from the rhizomes and roots of *G. scabra*. The known compounds were identified as olivieroside (3),⁴ 1-O- β -D-glucopyranosylamplexine (4),⁵ and benzyl alcohol *O*- α -L-arabinopyranosyl $(1 \rightarrow 6)$ - β -D-glucopyranoside,⁶ respectively, by comparison of their spectroscopic data with those previously described in the literature. This is the first report of the latter of these compounds from G. scabra.

The positive-ion FABMS of compound **1** showed two quasimolecular ions at m/z 519 ($[M + H]^+$) and m/z 541 ($[M + Na]^+$). Acid hydrolysis of **1** with 5% HCl yielded glucose. The ¹H NMR spectrum of the aglycone part of **1** was essentially the same as that of gentiopicroside (**5**),⁴ showing signals for a vinyl group, an acetal methine proton, and two trisubstituted double bonds. Two anomeric proton signals (δ 4.39 and 4.68) were recognized. The coupling constants of two anomeric protons indicated that the glycosyl linkages are of β -configuration. The ¹³C NMR spectrum showed close similarity to that of **5**. However, a set of additional signals, corresponding to a terminal β -glucopyranosyl group, appeared at δ 62.5 (C-6"), 71.4 (C-4"), 75.0 (C-2"), 77.9 (C-3"), 78.2 (C-5"), and 105.0 (C-1") in the ¹³C NMR spectrum of **1**. The terminal β -glucopyra-

* To whom correspondence should be addressed. Tel: +81-22-234-4181. Fax: +81-22-275-2013. E-mail: mkikuchi@tohoku-pharm.ac.jp. nosyl group was involved in a glycosyl linkage at C-4' of the inner β -glucopyranosyl group, because the signal due to C-4' of the inner β -glucopyranosyl residue was markedly displaced downfield at δ 80.5 (+9.0 ppm), while the signals due to C-3' and C-5' were shifted upfield at δ 76.4 (-1.6 ppm) and 77.0 (-1.4 ppm), respectively, when comparing the ¹³C NMR spectrum of **1** with that of **5**. This was confirmed by observation of a long-range correlation from the anomeric proton signal of the terminal β -glucopyranosyl group at δ 4.39 to C-4' of the inner β -glucopyranosyl moiety in the HMBC spectrum. On the basis of this evidence, the structure of **1** was determined to be 4'-*O*- β -D-glucopyranosylgentiopicroside.

The positive-ion FABMS of 2 showed two quasimolecular ions at m/z 519 ([M + H] ⁺) and m/z 541 ([M + Na]⁺). Acid hydrolysis of 2 with 5% HCl yielded glucose. The ¹H and ¹³C NMR spectra resembled those of 5, except for the presence of an additional β -glucopyranosyl group. This β -glucopyranosyl group was involved in a glycosyl linkage at C-6' of the inner β -glucopyranosyl group, because the signal due to C-6' of the inner β -glucopyranosyl residue was markedly downfield shifted at δ 70.0 (+7.2 ppm), when comparing the ¹³C NMR spectrum of **2** with that of **5**. This was confirmed by the observation of a long-range correlation from the anomeric proton signal of the terminal β -glucopyranosyl group at δ 4.37 to C-6' of the inner β -glucopyranosyl moiety in the HMBC spectrum. These results indicated that the structure of **2** was 6'-O- β -Dglucopyranosylgentiopicroside.

Experimental Section

General Experimental Procedures. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-LA 600 spectrometer at 600 and 150 MHz, respectively, with tetramethylsilane as internal standard. Optical rotations were determined using a JASCO DIP-360 digital polarimeter. UV spectra were recorded with a Beckman DU-64 spectrophotometer. FABMS (positive-ion mode) were recorded on a JEOL JMS-DX 303 mass spectrometer, using a glycerin matrix. Column chromatography was carried out on Kieselgel 60 (230–400 mesh, Merck). HPLC was carried out on a Tosoh HPLC system (pump, CCPS; detector, RI-8020). GC was carried out on a Shimadzu GC-7A gas chromatograph.

Plant Material. The dried rhizomes and roots of *Gentiana scabra* (from Jilin, China) were purchased from Uchida Wakanyaku Co., Ltd., Tokyo, Japan, in 1999. A voucher specimen (No. 8) is deposited in the laboratory of M. Kikuchi.

Extraction and Isolation. The dried rhizomes and roots of *G. scabra* (1.5 kg) were extracted with MeOH at room temperature. The MeOH extract (160.0 g) was successively

10.1021/np0103580 CCC: \$20.00 © 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 11/17/2001

extracted with CHCl₃, EtOAc, and n-BuOH. The n-BuOHsoluble fraction was concentrated under reduced pressure to afford a residue (23.7 g). A part of this residue ($\hat{1}1.4$ g) was chromatographed on a silica gel column using CHCl3-MeOH- H_2O (30:10:1), and the eluate was separated into 53 fractions. Fraction 22 was purified by preparative HPLC [column, TSKgel ODS-120T (7.8 mm i.d. \times 30 cm); column temperature, 40 °C; mobile phase, MeOH–H₂O (1:3); flow rate, 1.5 mL/min; UV detector, 270 nm] to give 4 (7.6 mg). Fraction 24 was purified by preparative HPLC [column, TSKgel ODS-120T (7.8 mm i.d. \times 30 cm); column temperature, 40 °C; mobile phase, MeOH-H₂O (1:3); flow rate, 1.5 mL/min; UV detector, 270 nm] to give 3 (0.5 mg) and 5 (0.2 mg). Fraction 34 was purified by preparative HPLC [column, TSKgel ODS-120T (7.8 mm i.d. \times 30 cm); column temperature, 40 °C; mobile phase, MeOH– H₂O (1:3); flow rate, 1.5 mL/min; UV detector, 260 nm] to give 1 (1.1 mg). Fraction 35 was purified by preparative HPLC [column, TSKgel ODS-120T (7.8 mm i.d. × 30 cm); column temperature, 40 °C; mobile phase, MeOH-H₂O (1:3); flow rate, 1.5 mL/min; RI detector] to give 2 (13.6 mg).

4'-O-β-D-Glucopyranosylgentiopicroside (1): amorphous powder; $[\alpha]^{24}_{D}$ –78.9° (*c* 0.1, MeOH); UV (MeOH) λ_{max} $(\log \epsilon)$ 253 (3.79), 268 (3.83) nm; ¹H NMR (CD₃OD) δ 7.44 (1H, br s, H-3), 5.75 (1H, ddd, J = 17.2, 10.3, 7.0 Hz, H-8), 5.62 (1H, m, H-6), 5.62 (1H, d, J = 2.9 Hz, H-1), 5.23 (1H, ddd, J =17.2, 1.5, 1.5 Hz, H-10b), 5.20 (1H, dd, J = 10.3, 1.1 Hz, H-10a), 5.07 (1H, dddd, J = 17.6, 2.6, 1.5, 1.1 Hz, H-7b), 4.99 (1H, dd, J = 17.6, 3.3 Hz, H-7a), 4.68 (1H, d, J = 8.1 Hz, H-1'), 4.39 (1H, d, J = 8.1 Hz, H-1''), 3.93 (1H, dd, J = 12.1, 2.2 Hz, H-6'b), 3.87 (1H, dd, J = 11.7, 2.2 Hz, H-6"b), 3.84 (1H, dd, J = 12.1, 4.4 Hz, H-6'a), 3.65 (1H, dd, J = 11.7, 5.9 Hz, H-6"a), 3.55 (1H, dd, J = 9.2, 8.8 Hz, H-4'), 3.51 (1H, dd, J = 8.8, 8.8 Hz, H-3'), 3.45 (1H, ddd, J = 9.2, 4.4, 2.2 Hz, H-5'), 3.30-3.34 (4H, m, H-9, H-3", H-4", H-5"), 3.221 (1H, dd, J=8.8, 8.1 Hz, H-2'), 3.216 (1H, dd, J = 8.8, 8.1 Hz, H-2"); ¹³C NMR (CD₃OD) δ 166.3 (s, C-11), 150.6 (d, C-3), 135.0 (d, C-8), 127.0 (s, C-5), 118.6 (t, C-10), 117.3 (d, C-6), 105.0 (d, C-1"), 104.6 (s, C-4), 100.1 (d, C-1'), 98.6 (d, C-1), 80.5 (d, C-4'), 78.2 (d, C-5"), 77.9 (d, C-3"), 77.0 (d, C-5'), 76.4 (d, C-3'), 75.0 (d, C-2"), 74.3 (d, C-2'), 71.4 (d, C-4"), 70.9 (t, C-7), 62.5 (t, C-6"), 61.8 (t, C-6'), 46.7 (d, C-9); FABMS (positive-ion mode) m/z 519 [M + H]+, 541 $[M + Na]^+$.

6'-*O*-β-D-**Glucopyranosylgentiopicroside** (2): amorphous powder; $[\alpha]^{26}$ – 111.7° (*c* 1.36, MeOH); UV (MeOH) λ_{max}

(log ε) 252 (3.91), 270 (3.95) nm; ¹H NMR (CD₃OD) δ 7.45 (1H, br s, H-3), 5.76 (1H, ddd, J = 17.2, 10.3, 7.0 Hz, H-8), 5.64 (1H, d, J = 2.9 Hz, H-1), 5.61 (1H, m, H-6), 5.24 (1H, ddd, J =17.2, 1.5, 1.5 Hz, H-10b), 5.22 (1H, ddd, J = 10.3, 1.5, 1.1 Hz, H-10a), 5.07 (1H, dddd, J = 17.6, 2.6, 1.5, 1.1 Hz, H-7b), 5.00 (1H, dd, J = 17.6, 2.2, 1.1 Hz, H-7a), 4.66 (1H, d, J = 8.1 Hz, H-1'), 4.37 (1H, d, J = 7.7 Hz, H-1"), 4.17 (1H, dd, J = 11.7, 2.2 Hz, H-6'b), 3.87 (1H, dd, J = 11.7, 2.2 Hz, H-6''b), 3.76 (1H, dd, J = 11.7, 6.2 Hz, H-6'a), 3.66 (1H, dd, J = 11.7, 5.5)Hz, H-6"a), 3.52 (1H, ddd, J = 9.2, 6.2, 2.2 Hz, H-5'), 3.26-3.36 (6H, m, H-9, H-3', H-3", H-4', H-4", H-5"), 3.21 (1H, dd, J = 8.8, 7.7 Hz, H-2"), 3.16 (1H, dd, J = 8.4, 8.1 Hz, H-2'); ¹³C NMR (CD₃OD) δ 166.4 (s, C-11), 150.8 (d, C-3), 135.0 (d, C-8), 127.1 (s, C-5), 118.8 (t, C-10), 117.2 (d, C-6), 105.1 (d, C-1"), 105.0 (s, C-4), 100.5 (d, C-1'), 98.8 (d, C-1), 78.1 (d, C-3', C-5"), 77.9 (d, C-3"), 77.5 (d, C-5'), 75.1 (d, C-2"), 74.5 (d, C-2'), 71.6 (d, C-4'), 71.4 (d, C-4"), 70.9 (t, C-7), 70.0 (t, C-6'), 62.8 (t, C-6"), 46.7 (d, C-9); FABMS (positive-ion mode) *m*/*z* 519 [M + H]⁺, 541 [M + Na]⁺.

Acid Hydrolysis of 1 and 2. Acid hydrolysis of each of compounds 1 and 2 with 5% HCl yielded D-glucose. The TMSi derivative of the sugar was identified as a D-glucose derivative by GC analysis by comparing with that of a standard sample. GC conditions: column, SE-52 (2.0 mm i.d. \times 3 m); column temperature, 160 °C; carrier gas, N₂; flow rate, 25 mL/min; detector, FID. D-Glucose, t_R 31.8 and 52.1 min.

Acknowledgment. We are grateful to Mr. S. Sato and Mr. T. Matsuki of this University for providing the mass and NMR spectra.

References and Notes

- (1) Ikeshiro, Y.; Tomita, Y. Planta Med. 1983, 48, 169-173.
- (2) Inouye, H.; Nakamura, Y. Yakugaku Zasshi 1971, 91, 755-759.
- (3) Ikeshiro, Y.; Mase, I.; Tomita, Y. *Planta Med.* **1990**, *56*, 101–103.
 (4) Takeda, Y.; Masuda, T.; Honda, G.; Takaishi, Y.; Ito, M.; Ashurmetov,
- O., A.; Khodzhimatov, O., K.; Otsuka, H. Chem. Pharm. Bull. 1999, 47. 1338-1340.
- (5) Rasoanaivo, P.; Nicoletti, M.; Multari, G.; Palazzino, G.; Galeffi, C. (6) Russenario 1994, LXV, 38–43.
 (6) Cui, B.; Nakamura, M.; Kinjo, J.; Nohara, T. Chem. Pharm. Bull.
- 1993, 41, 178-182.

NP010358O